Construction of human XRCC1 minigenes that fully correct the CHO DNA repair mutant EM9.

نویسندگان

  • K W Caldecott
  • J D Tucker
  • L H Thompson
چکیده

The human gene that corrects the DNA repair defect of the CHO cell mutant EM9 is designated XRCC1 and is the first human gene to be cloned that has an established role in DNA strand-break repair. In this study, either an XRCC1 cosmid genomic fragment or synthetic oligonucleotides were ligated to an incomplete XRCC1 cDNA to generate two full-length XRCC1 cDNA constructs. The ability of these minigene constructs to restore normal levels of sister chromatid exchange (SCE) to EM9 upon transfection was demonstrated, and the transfectants grew at normal rates in selective medium that is fully toxic to EM9 cells. Constructs in which the XRCC1 open reading frame (ORF) was transcribed from the SV40 early promoter or the genomic XRCC1 native promoter were compared in their efficiency of correction. EM9 transfectants derived from the SV40 promoter displayed fewer SCEs and lower sensitivity to CldUrd than either AA8 wild-type cells or transfectants containing the ORF transcribed from the native promoter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

XRCC1 protects against particulate chromate-induced chromosome damage and cytotoxicity in Chinese hamster ovary cells.

Water-insoluble hexavalent chromium compounds are well-established human lung carcinogens. Lead chromate, a model insoluble Cr(VI) compound, induces DNA damage, chromosome aberrations, and dose-dependent cell death in human and Chinese hamster ovary (CHO) cells. The relationship between lead chromate-induced DNA damage and chromosome aberrations is unknown. Our study focus was on examining the ...

متن کامل

Mitochondrial DNA ligase III function is independent of Xrcc1.

Hamster EM9 cells, which lack Xrcc1 protein, have reduced levels of DNA ligase III and are defective in nuclear base excision repair. The Xrcc1 protein stabilizes DNA ligase III and may even play a direct role in catalyzing base excision repair. Since DNA ligase III is also thought to function in mitochondrial base excision repair, it seemed likely that mitochondrial DNA ligase III function wou...

متن کامل

XRCC1 is phosphorylated by DNA-dependent protein kinase in response to DNA damage

The two BRCT domains (BRCT1 and BRCT2) of XRCC1 mediate a network of protein-protein interactions with several key factors of the DNA single-strand breaks (SSBs) and base damage repair pathways. BRCT1 is required for the immediate poly(ADP-ribose)-dependent recruitment of XRCC1 to DNA breaks and is essential for survival after DNA damage. To better understand the biological role of XRCC1 in the...

متن کامل

Inhibition of base excision repair potentiates iododeoxyuridine-induced cytotoxicity and radiosensitization.

5-Iodo-2'-deoxyuridine (IdUrd) is a halogenated thymidine analogue recognized as an effective in vitro and in vivo radiosensitizer in human cancers. IdUrd-related cytotoxicity and/or radiosensitization are correlated with the extent of IdUrd-DNA incorporation replacing thymidine. IdUrd cytotoxicity and radiosensitization result, in part, from induction of DNA single-strand breaks (SSB) with sub...

متن کامل

Variant Alleles in XRCC1 Arg194Trp and Arg399Gln Increase Risk of Gastrointestinal Cancer in Sabah, North Borneo

Cancer is a disease of major impact in world health of which gastrointestinal cancer (GIC) is the most common cancer causing high mortality. According to a report by National Cancer Registry in 2011, a total of 18 219 new cancer incidences were diagnosed among Malaysian population in 2007. Colorectal cancer was recorded as second highest percentage of cancer that occurred in Malaysians after br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 20 17  شماره 

صفحات  -

تاریخ انتشار 1992